Commande ProduitScalaire

De GeoGebra Manual
Aller à : navigation, rechercher



Pour calculer directement le produit scalaire de deux vecteurs u et v créés, vous pouvez utiliser tout simplement le produit u v.

Exemples :
Vous avez créé deux vecteurs du plan \vec{u} \begin{pmatrix}2 \\ 2\end{pmatrix} et \vec{v}\begin{pmatrix}-3 \\ 1\end{pmatrix}, u v donne le nombre -4;
Vous avez créé deux vecteurs de l'espace \vec{w} \begin{pmatrix}1 \\ 3\\2\end{pmatrix} et \vec{s} \begin{pmatrix}0 \\ 3\\-2\end{pmatrix} , w s donne le nombre 5.
ProduitScalaire( <Vecteur>, <Vecteur> )
Retourne le produit scalaire des deux vecteurs
Exemple : ProduitScalaire((2, 2), (-3, 1)) retourne -4 de définition (2, 2) (-3, 1) dans Algèbre ;
Après saisie de u=(2, 2) et de v=(-3, 1)
ProduitScalaire(u, v) retourne -4 de définition u v dans Algèbre.


Menu view cas.svg Calcul formel :

La création préalable des vecteurs n'est pas nécessaire, on peut utiliser des listes de coordonnées

Exemples :
ProduitScalaire({2, 2}, {-3, 1}) donne le nombre -4 ;
ProduitScalaire({1, 3, 2}, {0, 3, -2}) donne le nombre 5.


Avec la possibilité de travailler en littéral.

Exemples :
Vous créez deux vecteurs du plan par u := (a, b) et v := ( a', b')
ProduitScalaire(u,v) donne le nombre a a' + b b'.

Vous créez deux vecteurs de l'espace par u := (a, b, c) et v := ( a', b', c')
ProduitScalaire(u,v) donne le nombre a a' + b b' + c c'.


Saisie : Voir aussi la commande : ProduitVectoriel.
© 2021 International GeoGebra Institute