Comando VectorNormal
De GeoGebra Manual
VectorNormal
Categorías de Comandos (todos)
- VectorNormal( <Dirección (vector, recta, semirrecta o segmento)> )
- Establece el vector perpendicular a la dirección determinada por la recta (o por la semirrecta o por el segmento o incluso, el vector dado).
Nota: Una recta con ecuación ax + by = c establece \begin{pmatrix}a \\ b\end{pmatrix} como vector perpendicular.
Ejemplo:
Siendo
j := Recta[ (1, 4), (5, -3)]
VectorNormal[ j ]
crea el vector u=(7, 4) perpendicular a la recta j.- VectorNormal( <Segmento> )
- Establece el vector perpendicular al segmento con la misma longitud.
Ejemplo:
Siendo
k := Segmento[ (3, 2), (14, 5) ]
, VectorNormal[ k ]
crea u=(-3, 11) como vector perpendicular a \vec{k}.- VectorNormal( <Vector> )
- Establece el vector perpendicular al dado.
Nota: Un vector de coordenadas \begin{pmatrix}a \\ b \end{pmatrix} tienen a \begin{pmatrix}-b \\ a \end{pmatrix} como el perpendicular.
Ejemplo: Siendo \begin{pmatrix}3 \\ 2 \end{pmatrix} el vector \vec{v}
VectorNormal[(3, 2)]
crea el de coordenadas \begin{pmatrix}-2 \\ 3 \end{pmatrix} - 2\choose 3. Nota: Un vector de coordenadas \begin{pmatrix}a \\ b \end{pmatrix} tienen a \begin{pmatrix}-b \\ a \end{pmatrix} como vector ortogonal.
- VectorNormal( <Plano> )
- Establece el vector perpendicular al plano.
Nota:
Para un plano determinado por la ecuación cartesiana a x+ b y +c z = k, el resultado es el vector \begin{pmatrix}a \\ b \\ c\end{pmatrix}
En Vista CAS ComputaciónAlgebraicaSimbólica
En esta vista se admite la misma sintaxis pudiendo incluirse literales en operaciones simbólicas.
- VectorNormal( <Vector> )
- Establece el vector perpendicular al dado.
Nota: Cuando los datos dados incluyen variables sin valor asignado, el resultado es la fórmula del vector perpendicular correspondiente.
Dado el vector de coordenadas \begin{pmatrix}a \\ b \end{pmatrix},
Dado el vector de coordenadas \begin{pmatrix}a \\ b \end{pmatrix},
VectorNormal[(a, b)]
, crea el vector \begin{pmatrix}-b \\ a \end{pmatrix}.Ejemplo:
VectorNormal[(3, 2)]
da el vector {-2, 3}Ejemplo:
VectorNormal[ Plano_xOy ]
establece el vector perpendicular u=(0, 0, 1) del plano xOy. Nota:
Ver también el comando VectorNormalUnitario
Ver también el comando VectorNormalUnitario