Comandos de Álgebra

De GeoGebra Manual
Saltar a: navegación, buscar


Comandos de Álgebra

Desde la versión 4.2, se cuenta con las siguientes funciones

Comando CompletaCuadrado

CompletaCuadrado( <Función Cuadrática> )
Da por resultado y grafica la función cuadrática indicada acorde al correspondiente formato canónico a(x-h)^2+k
Ejemplos:

CompletaCuadrado(2x²+7x-15) da por resultado 2 (x + 1.75)² - 21.125 (Opción a 3 decimales)

CompletaCuadrado(x^2 - 4x + 7) crea la función (x - 2)2 + 3

Completa 1a.gif

Nota: El artículo que ilustra cómo se completa el cuadrado] (en inglés completing the square) muestra cómo esta maniobra y modalidad puede resultar útil para describir y graficar funciones cuadráticas, una vez que se las establece con la forma: ;a(x-h)^2+k
Completa 1b.gif

Menu view cas.svg En la Vista ComputaciónAlgebraicaSimbólica

El comando obra de modo análogo al descripto, con mayor precisión en la presentación de la formulación. Admite literales en operaciones simbólicas.

Ejemplos:

CompletaCuadrado(2x²+7x-15) da por resultado:

2 (x + \frac{7}{4})² - \frac{169}{8}

CompletaCuadrado( (x + ñ)(x - ñ) + sqrt(7) x) da por resultado:

{ \left( x + \frac{\sqrt{7} }{2} \right)^{2} + \frac{-4 ñ^{2} - 7}{4} }

Nota: Ver también los comandos Desarrolla y Simplifica.

link

Comando nPr


nPr( <Número (o valor numérico)n>, <Número (o valor numérico)p> )
Da por resultado el número de arreglos de p elementos tomados de un conjunto de n, en variaciones sin repetición.
Bulbgraph.pngAtención: Número asociado al de variaciones sin repetición, le suele corresponder en algunas calculadoras la tecla nPr lo que se formula como P_r^n
Ejemplo:
nPr(10, 2) da 90.

Menu view cas.svg En la Vista ComputaciónAlgebraicaSimbólica

En esta vista se admite la misma sintaxis y la inclusión de literales para operar simbólicamente.

Ejemplos:
nPr(n, 3) es evaluado como Mode evaluate.pngn³ - 3 n² + 2 n
{\frac{\Gamma \left( n + 1 \right)}{\Gamma \left( n - 2 \right)} }
nPr(n, k) al ser evaluado resulta Mode evaluate.png {\frac{\Gamma \left( n + 1 \right) }{\Gamma \left( -k + n + 1 \right) } }
Siendo \Gamma \left( n + 1 \right) = n! equivale a \frac{n!}{(n - k)! }
Nota: Ver también el comando nCr(antes NúmeroCombinatorio).

Note Aviso: Este comando, habitual en Probabilidades, se encuadra como de Álgebra, campo en que se emplea con frecuencia.

Subcategorías

Esta categoría solo contiene la siguiente subcategoría.

Páginas en la categoría «Comandos de Álgebra»

Las siguientes 7 páginas pertenecen a esta categoría, de un total de 7.

© 2020 International GeoGebra Institute