Predefined Functions and Operators
From GeoGebra Manual
To create numbers, coordinates, or equations using the Input Bar you may also use the following pre-defined functions and operations. Logic operators and functions are listed in article about Boolean values.
Note: The predefined functions need to be entered using parentheses. You must not put a space between the function name and the parentheses.
Operation / Function | Input |
---|---|
ℯ (Euler's number) | Alt + e |
ί (Imaginary unit) | Alt + i |
π | Alt + p or pi |
° (Degree symbol) | Alt + o or deg |
Addition | + |
Subtraction | - |
Multiplication | * or Space key |
Scalar product | * or Space key |
Vector product(see Points and Vectors) | ⊗ |
Division | / |
Exponentiation | ^ or superscript (x^2 or x2 )
|
Factorial | ! |
Parentheses | ( ) |
x-coordinate | x( ) |
y-coordinate | y( ) |
z-coordinate | z( ) |
Argument (also works for 3D points / vectors) | arg( ) |
Conjugate | conjugate( ) |
Real | real( ) |
Imaginary | imaginary( ) |
Absolute value | abs( ) |
Altitude angle (for 3D points / vectors) | alt( ) |
Sign | sgn( ) or sign() |
Greatest integer less than or equal | floor( ) |
Least integer greater than or equal | ceil( ) |
Round to nearest integer (or to y decimal places) | round(x) or round(x, y) |
Square root | sqrt( ) |
Cubic root | cbrt( ) |
The nth root of x | nroot(x, n) |
Random number between 0 and 1 | random( ) |
Exponential function | exp( ) or ℯx |
Logarithm (natural, to base e) | ln( ) |
Logarithm to base 2 | log₂() or ld( ) |
Logarithm to base 10 | log₁₀( ) or log( ) or lg( ) |
Logarithm of x to base b | log(b, x ) |
Cosine | cos( ) |
Sine | sin( ) |
Tangent | tan( ) |
Secant | sec() |
Cosecant | csc() or cosec() |
Cotangent | cot() or cotan() |
Arc cosine (answer in radians) | acos( ) or arccos( ) |
Arc cosine (answer in degrees) | acosd( ) |
Arc sine (answer in radians) | asin( ) or arcsin( ) |
Arc sine (answer in degrees) | asind( ) |
Arc tangent (answer in radians, between -π/2 and π/2) | atan( ) or arctan( ) |
Arc tangent (answer in degrees, between -90° and 90°) | atand( ) |
Arc tangent (answer in radians, between -π and π) | atan2(y, x) |
Arc tangent (answer in degrees, between -180° and 180°) | atan2d(y, x) |
Hyperbolic cosine | cosh( ) |
Hyperbolic sine | sinh( ) |
Hyperbolic tangent | tanh( ) |
Hyperbolic secant | sech( ) |
Hyperbolic cosecant | csch( ) |
Hyperbolic cotangent | coth( ) or cotanh() |
Antihyperbolic cosine | acosh( ) or arccosh( ) |
Antihyperbolic sine | asinh( ) or arcsinh( ) |
Antihyperbolic tangent | atanh( ) or arctanh( ) |
Beta function Β(a, b) | beta(a, b) |
Incomplete beta function Β(x;a, b) | beta(a, b, x) |
Incomplete regularized beta function I(x; a, b) | betaRegularized(a, b, x) |
Gamma function Γ(x) | gamma( x) |
(Lower) incomplete gamma function γ(a, x) | gamma(a, x) |
(Lower) incomplete regularized gamma function P(a,x) = γ(a, x) / Γ(a) | gammaRegularized(a, x) |
Gaussian Error Function | erf(x) |
Digamma function | psi(x) |
The Polygamma function is the (m+1)th derivative of the natural logarithm of the Gamma function, gamma(x) (m=0,1) | polygamma(m, x) |
The Sine Integral function | sinIntegral(x) |
The Cosine Integral function | cosIntegral(x) |
The Exponential Integral function | expIntegral(x) |
The Riemann-Zeta function ζ(x) | zeta(x) |
Lambert's W function LambertW(x, branch) | LambertW(x, 0), LambertW(x, -1) |
Note: The x, y, z operators can be used to get corresponding coefficients of a line.