Predefined Functions and Operators

From GeoGebra Manual
Jump to: navigation, search


To create numbers, coordinates, or equations using the Input Bar you may also use the following pre-defined functions and operations. Logic operators and functions are listed in article about Boolean values.

Note: The predefined functions need to be entered using parentheses. You must not put a space between the function name and the parentheses.


Operation / Function Input
ℯ (Euler's number) Alt + e
ί (Imaginary unit) Alt + i
π Alt + p or pi
° (Degree symbol) Alt + o or deg
Addition +
Subtraction -
Multiplication * or Space key
Scalar product * or Space key
Vector product(see Points and Vectors)
Division /
Exponentiation ^ or superscript (x^2 or x2)
Factorial !
Parentheses ( )
x-coordinate x( )
y-coordinate y( )
z-coordinate z( )
Argument (also works for 3D points / vectors) arg( )
Conjugate conjugate( )
Real real( )
Imaginary imaginary( )
Absolute value abs( )
Altitude angle (for 3D points / vectors) alt( )
Sign sgn( ) or sign()
Greatest integer less than or equal floor( )
Least integer greater than or equal ceil( )
Round to nearest integer (or to y decimal places) round(x) or round(x, y)
Square root sqrt( )
Cubic root cbrt( )
The nth root of x nroot(x, n)
Random number between 0 and 1 random( )
Exponential function exp( ) or ℯx
Logarithm (natural, to base e) ln( )
Logarithm to base 2 log₂() or ld( )
Logarithm to base 10 log₁₀( ) or log( ) or lg( )
Logarithm of x to base b log(b, x )
Cosine cos( )
Sine sin( )
Tangent tan( )
Secant sec()
Cosecant csc() or cosec()
Cotangent cot() or cotan()
Arc cosine (answer in radians) acos( ) or arccos( )
Arc cosine (answer in degrees) acosd( )
Arc sine (answer in radians) asin( ) or arcsin( )
Arc sine (answer in degrees) asind( )
Arc tangent (answer in radians, between -π/2 and π/2) atan( ) or arctan( )
Arc tangent (answer in degrees, between -90° and 90°) atand( )
Arc tangent (answer in radians, between -π and π) atan2(y, x)
Arc tangent (answer in degrees, between -180° and 180°) atan2d(y, x)
Hyperbolic cosine cosh( )
Hyperbolic sine sinh( )
Hyperbolic tangent tanh( )
Hyperbolic secant sech( )
Hyperbolic cosecant csch( )
Hyperbolic cotangent coth( ) or cotanh()
Antihyperbolic cosine acosh( ) or arccosh( )
Antihyperbolic sine asinh( ) or arcsinh( )
Antihyperbolic tangent atanh( ) or arctanh( )
Beta function Β(a, b) beta(a, b)
Incomplete beta function Β(x;a, b) beta(a, b, x)
Incomplete regularized beta function I(x; a, b) betaRegularized(a, b, x)
Gamma function Γ(x) gamma( x)
(Lower) incomplete gamma function γ(a, x) gamma(a, x)
(Lower) incomplete regularized gamma function P(a,x) = γ(a, x) / Γ(a) gammaRegularized(a, x)
Gaussian Error Function erf(x)
Digamma function psi(x)
The Polygamma function is the (m+1)th derivative of the natural logarithm of the Gamma function, gamma(x) (m=0,1) polygamma(m, x)
The Sine Integral function sinIntegral(x)
The Cosine Integral function cosIntegral(x)
The Exponential Integral function expIntegral(x)
The Riemann-Zeta function ζ(x) zeta(x)
Lambert's W function LambertW(x, branch) LambertW(x, 0), LambertW(x, -1)
Note: The x, y, z operators can be used to get corresponding coefficients of a line.
© 2024 International GeoGebra Institute