LaTeX code for the most common formulas

From GeoGebra Manual
Jump to: navigation, search

If you have somewhere a very long formula, please share it with us. This will save time for everybody! Just edit this page and paste you code at inside the input-box, if you don't know how to use the wiki-code correctly.

How to use the formulas

Just copy the text from the column LaTex Input into your text-object input-box. If the formula should be dynamic you need to insert the object instead of the variables that are used here.

Preview

Examples in GeoGebra https://www.geogebra.org/m/jvXBfFY6

Useful Formulas

Usage LaTex Input LaTex Output
Square-root symbol \sqrt{x} \sqrt{x}
Fractions \frac{a}{b+c} \frac{a}{b+c}
\left( and \right) for large brackets \left( \frac{a}{b} \right) ^{2} \left( \frac{a}{b} \right) ^{2}
Use \textcolor for color x^{\textcolor{#FF00FF}{2}}
Use \cr for a line break x=3 \cr y=2 \begin{array} x=3 \\ y=2 \end{array}
Use \text{ } to mix text and expressions \text{Roots of }ax^2 + bx + c= 0\text{ are }x = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a} \text{Roots of }ax^2 + bx + c= 0 \text{ are }
x = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a}
Slope for a straight line m=\frac{y_2-y_1}{x_2-x_1} m=\frac{y_2-y_1}{x_2-x_1}
Slope for a straight line (2) m= \frac{Δy}{Δx}=\frac{y_A-y_B}{x_A-x_B} m= \frac{Δy}{Δx}=\frac{y_A-y_B}{x_A-x_B}
Compound Interest Amount = Principal \cdot \left( 1 + \frac {rate}{periods} \right) ^ {time \cdot periods} Amount = Principal \cdot \left( 1 + \frac {rate}{periods} \right) ^ {time \cdot periods}
Quadratic Equation a x^2 + b x + c = 0 a x^2 + b x + c = 0
Simplified Quadratic Equation x^2 + p x + q = 0 x^2 + p x + q = 0
Vertex Form f(x) = a(x - h)^2 + k f(x) = a(x - h)^2 + k
Factored Form f(x) = (x + a)(x + b) f(x) = (x + a)(x + b)
Quadratic Formula x = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a} x = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a}
Quadratic Formula x_{1/2} = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a} x_{1/2} = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a}
Quadratic Formula for Simplified Quadratic Equation x_{1/2} = - \frac{p}{2}{ \pm \sqrt {\left( \frac{p}{2} \right)^2 - q}} x_{1/2} = - \frac{p}{2}{ \pm \sqrt {\left( \frac{p}{2} \right)^2 - q}}
Quadratic Formula for Simplified Quadratic Equation x_{1/2} = - \frac{p}{2}{ \pm \sqrt {\left( \frac{p}{2} \right)^2 - q}} x_{1/2} = - \frac{p}{2}{ \pm \sqrt { \frac{p^2}{4} - q}}
Cubic Equation a x^3 + b x^2 + c x + d = 0 a x^3 + b x^2 + c x + d = 0
Basic Trigonometry Forms \sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c) \sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c)
f(x) = a \sin b (x - h) + k f(x) = a \sin b (x - h) + k
f(x) = a sin (B x + C) + k f(x) = a \sin (B x + C) + k
b (x - h) = B \left( x - \frac {-C}{B} \right) b (x - h) = B \left( x - \frac {-C}{B} \right)
h = \frac {-C}{B} h = \frac {-C}{B}
Limit (corrected to work in HTML5 as well as Java) \lim_{x \to \infty} \left( \frac{1}{x} \right) \lim_{x \to \infty} \left( \frac{1}{x} \right)
Distance Formula \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

Text formatting

Usage LaTex Input LaTex Output
Text with spacing \text{some words with spaces} \text{some words with spaces}
Italic text \mathit{italic text} \mathit{italic text}
Bold text \mathbf{bold text} \mathbf{bold text}
© 2020 International GeoGebra Institute