LaTeX code for the most common formulas

From GeoGebra Manual
Jump to: navigation, search

If you have somewhere a very long formula, please share it with us. This will save time for everybody! Just edit this page and paste you code at inside the input-box, if you don't know how to use the wiki-code correctly.

How to use the formulas

Just copy the text from the column LaTex Input into your text-object input-box. If the formula should be dynamic you need to insert the object instead of the variables that are used here.

Preview

Examples in GeoGebra https://www.geogebra.org/m/jvXBfFY6

Useful Formulas

Usage LaTex Input LaTex Output
Square-root symbol \sqrt{x} \mathrm{\mathsf{ \sqrt{x} }}
Fractions \frac{a}{b+c} \mathrm{\mathsf{ \frac{a}{b+c} }}
\left( and \right) for large brackets \left( \frac{a}{b} \right) ^{2} \mathrm{\mathsf{ \left( \frac{a}{b} \right) ^{2} }}
Use \textcolor for color x^{\textcolor{#FF00FF}{2}}
Use \cr for a line break x=3 \cr y=2 \mathrm{\mathsf{ \begin{array} x=3 \\ y=2 \end{array} }}
Use \text{ } to mix text and expressions \text{Roots of }ax^2 + bx + c= 0\text{ are }x = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a} \mathrm{\mathsf{ \text{Roots of }ax^2 + bx + c= 0 \text{ are } }}
\mathrm{\mathsf{ x = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a} }}
Slope for a straight line m=\frac{y_2-y_1}{x_2-x_1} \mathrm{\mathsf{ m=\frac{y_2-y_1}{x_2-x_1} }}
Slope for a straight line (2) m= \frac{Δy}{Δx}=\frac{y_A-y_B}{x_A-x_B} \mathrm{\mathsf{ m= \frac{Δy}{Δx}=\frac{y_A-y_B}{x_A-x_B} }}
Compound Interest Amount = Principal \cdot \left( 1 + \frac {rate}{periods} \right) ^ {time \cdot periods} \mathrm{\mathsf{ Amount = Principal \cdot \left( 1 + \frac {rate}{periods} \right) ^ {time \cdot periods} }}
Quadratic Equation a x^2 + b x + c = 0 \mathrm{\mathsf{ a x^2 + b x + c = 0 }}
Simplified Quadratic Equation x^2 + p x + q = 0 \mathrm{\mathsf{ x^2 + p x + q = 0 }}
Vertex Form f(x) = a(x - h)^2 + k \mathrm{\mathsf{ f(x) = a(x - h)^2 + k }}
Factored Form f(x) = (x + a)(x + b) \mathrm{\mathsf{ f(x) = (x + a)(x + b) }}
Quadratic Formula x = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a} \mathrm{\mathsf{ x = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a} }}
Quadratic Formula x_{1/2} = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a} \mathrm{\mathsf{ x_{1/2} = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a} }}
Quadratic Formula for Simplified Quadratic Equation x_{1/2} = - \frac{p}{2}{ \pm \sqrt {\left( \frac{p}{2} \right)^2 - q}} \mathrm{\mathsf{ x_{1/2} = - \frac{p}{2}{ \pm \sqrt {\left( \frac{p}{2} \right)^2 - q}} }}
Quadratic Formula for Simplified Quadratic Equation x_{1/2} = - \frac{p}{2}{ \pm \sqrt {\left( \frac{p}{2} \right)^2 - q}} \mathrm{\mathsf{ x_{1/2} = - \frac{p}{2}{ \pm \sqrt { \frac{p^2}{4} - q}} }}
Cubic Equation a x^3 + b x^2 + c x + d = 0 \mathrm{\mathsf{ a x^3 + b x^2 + c x + d = 0 }}
Basic Trigonometry Forms \sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c) \mathrm{\mathsf{ \sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c) }}
f(x) = a \sin b (x - h) + k \mathrm{\mathsf{ f(x) = a \sin b (x - h) + k }}
f(x) = a sin (B x + C) + k \mathrm{\mathsf{ f(x) = a \sin (B x + C) + k }}
b (x - h) = B \left( x - \frac {-C}{B} \right) \mathrm{\mathsf{ b (x - h) = B \left( x - \frac {-C}{B} \right) }}
h = \frac {-C}{B} \mathrm{\mathsf{ h = \frac {-C}{B} }}
Limit (corrected to work in HTML5 as well as Java) \lim_{x \to \infty} \left( \frac{1}{x} \right) \mathrm{\mathsf{ \lim_{x \to \infty} \left( \frac{1}{x} \right) }}
Distance Formula \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \mathrm{\mathsf{ \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} }}

Text formatting

Usage LaTex Input LaTex Output
Text with spacing \text{some words with spaces} \mathrm{\mathsf{ \text{some words with spaces} }}
Italic text \mathit{italic text} \mathrm{\mathsf{ \mathit{italic text} }}
Bold text \mathbf{bold text} \mathrm{\mathsf{ \mathbf{bold text} }}
© 2020 International GeoGebra Institute