Angle Command
From GeoGebra Manual
- Angle( <Object> )
- Conic: Returns the angle of twist of a conic section’s major axis (see command Axes).
- Example:
Angle(x²/4+y²/9=1)
yields 90° or 1.57 if the default angle unit is radians.
Note: It is not possible to change the Angle Unit to Radian in GeoGebra 5.0 Web and Tablet App Version.
- Vector: Returns the angle between the x‐axis and given vector.
- Example:
Angle(Vector((1, 1)))
yields 45° or the corresponding value in radians.
- Point: Returns the angle between the x‐axis and the position vector of the given point.
- Example:
Angle((1, 1))
yields 45° or the corresponding value in radians.
- Number: Converts the number into an angle (result in [0,360°] or [0,2π] depending on the default angle unit).
- Example:
Angle(20)
yields 65.92° when the default unit for angles is degrees.
- Polygon: Creates all angles of a polygon in mathematically positive orientation (counter clockwise).
- Example:
Angle(Polygon((4, 1), (2, 4), (1, 1)))
yields 56.31°, 52.13° and 71.57° or the corresponding values in radians.
- Note: If the polygon was created in counter clockwise orientation, you get the interior angles. If the polygon was created in clockwise orientation, you get the exterior angles.
- Angle( <Vector>, <Vector> )
- Returns the angle between two vectors (result in [0,360°] or [0,2π] depending on the default angle unit).
- Example:
Angle(Vector((1, 1)), Vector((2, 5)))
yields 23.2° or the corresponding value in radians.
- Angle( <Line>, <Line> )
- Returns the angle between the direction vectors of two lines (result in [0,360°] or [0,2π] depending on the default angle unit).
- Example:
Angle(y = x + 2, y = 2x + 3)
yields 18.43° or the corresponding value in radians..Angle(Line((-2, 0, 0), (0, 0, 2)), Line((2, 0, 0), (0, 0, 2)))
yields 90° or the corresponding value in radians.
- and in CAS View :
Angle(x + 2, 2x + 3)
yields acos \left( 3 \cdot \frac{\sqrt{10}}{10} \right).- Define
f(x) := x + 2
andg(x) := 2x + 3
then commandAngle(f(x), g(x))
yields acos \left(3 \cdot \frac{\sqrt{10}}{10} \right).
- Angle( <Line>, <Plane> )
- Returns the angle between the line and the plane.
- Example:
Angle(Line((1, 2, 3),(-2, -2, 0)), z = 0)
yields 30.96° or the corresponding value in radians.
- Angle( <Plane>, <Plane> )
- Returns the angle between the two given planes.
- Example:
Angle(2x - y + z = 0, z = 0)
yields 114.09° or the corresponding value in radians.
- Angle( <Point>, <Apex>, <Point> )
- Returns the angle defined by the given points (result in [0,360°] or [0,2π] depending on the default angle unit).
- Example:
Angle((1, 1), (1, 4), (4, 2))
yields 56.31° or the corresponding value in radians.
- Angle( <Point>, <Apex>, <Angle> )
- Returns the angle of size α drawn from point with apex.
- Example::*
Angle((0, 0), (3, 3), 30°)
yields 30° and the point (1.9, -1.1).
- Note: The point Rotate( <Point>, <Angle>, <Apex> ) is created as well.
- Angle( <Point>, <Point>, <Point>, <Direction> )
- Returns the angle defined by the points and the given Direction, that may be a line or a plane (result in [0,360°] or [0,2π] depending on the default angle unit).
- Note: Using a Direction allows to bypass the standard display of angles in 3D which can be set as just [0,180°] or [180°,360°], so that given three points A, B, C in 3D the commands
Angle(A, B, C)
andAngle(C, B, A)
return their real measure instead of the one restricted to the set intervals. - Example:
Angle((1, -1, 0),(0, 0, 0),(-1, -1, 0), zAxis)
yields 270° andAngle((-1, -1, 0),(0, 0, 0),(1, -1, 0), zAxis)
yields 90° or the corresponding values in radians.
Note: See also
Angle and
Angle with Given Size tools.

