NLöse (Befehl)

Aus GeoGebra Manual
Wechseln zu: Navigation, Suche

CAS Syntax

Dieser Befehl ist nur in der Menu view cas.svg CAS-Ansicht verwendbar.

NLöse( <Gleichung> )
Versucht eine numerische Lösung der angegebenen Gleichung für die Variable x zu finden. Für Funktionen, die keine Polynome sind, sollte immer ein Startwert angegeben werden (siehe weiter unten).
Beispiel:
NLöse[x^6 - 2x + 1 = 0] berechnet {x = 0.51, x = 1}.
NLöse( <Gleichung>, <Variable> )
Versucht eine numerische Lösungen der angegebenen Gleichung für die angegebene, unbekannte Variable. Für Funktionen, die keine Polynome sind, sollte immer ein Startwert angegeben werden (siehe weiter unten).
Beispiel:
NLöse[ a^4 + 34a^3 = 34, a ] berechnet {a = -34, a = 0.99}.
NLöse( <Gleichung>, <Variable = Startwert> )
Berechnet numerisch die Lösungen der angegebenen Gleichung für die unbekannte Variable mit angegebenen Startwert.
Beispiel:
  • NLöse[cos(x) = x, x = 0] berechnet {0.74}
  • NLöse[a^4 + 34a^3 = 34, a = 3] berechnet {a = 0.99}.
NLöse( <Liste von Gleichungen>, <Liste von Variablen> )
Versucht eine numerische Lösung des angegebenen Gleichungssystemes für die angegebenen, unbekannten Variablen zu finden.
Beispiel:
NLöse[{π / x = cos(x - 2y), 2 y - π = sin(x)}, {x = 3, y = 1.5}] berechnet {x = 3.14, y = 1.57}.
Anmerkung:
  • Wird kein Startwert wie beispielsweise a = 3 oder {x = 3, y = 1.5}, kann es möglich sein, dass der numerische Algorithmus nur schwer eine Lösung findet (auch mit Startwert gibt es keine Garantie, dass eine Lösung gefunden wird).
  • Die Anzahl der Dezimalstellen kann in Runden eingestellt werden.
  • Sie erhalten π mit der Tastenkombination Alt + p.
  • NLöse funktioniert nicht bei Funktionen, die asymptotisch zur x-Achse sind.
  • NLöse funktioniert nur, wenn die eingegebene Funktion stetig ist!
  • Siehe auch Befehle Löse und NLösungen.
© 2020 International GeoGebra Institute