Comando Límite

Saltar a: navegación, buscar
Limite[ <Función>, <Valor numérico> ]
Calcula el limite (límit en inglés) de la función para el valor fijado de su variable principal.
Bulbgraph.png¡OjO!: Puede incluso ser infinitocon un signo u otro el valor al que tiende y/o el resultado.
Ejemplos:
Límite[cos(x)/x,0] resulta indefinido ya que no está definido tal límite para x tendiendo a 0
Límite[(x^2+x)/ x^2, +∞] da por resultado 1

View-cas24.pngEn Vista CAS ComputaciónAlgebraicaSimbólica

En esta vista se admiten literales en operaciones simbólicas y, a la descripta, se suma la siguiente sintaxis exclusiva;

Límite[ <Expresión>, <Variable>, <Valor> ]
Calcula el límite de la expresión multivariable dada para el valor fijado de la variable indicada. Así, Límite[f, v, t] establece el límite de f para el valor t de la variable v.
Ejemplo:
Límite[ñ sen(w)/w, ñ, 0] da 0 y Límite[ñ sen(w)/w, w, 0] da ñ
Límite[ <Expresión>, <Valor> ]
Da por resultado el límite de la expresión para el valor indicado, de su variable principal.
Bulbgraph.png¡OjO!: La expresión puede ser una función multvariable y/o incluir literales.
Nota: Límite[f(w), m] establece el límite de f para w tendiendo a m como ilustran los siguientes ejemplos.
Ejemplos:

Límite[((ñ ü (1-cos(x)))/x^2)+ñ, 0 ] da \mathrm{\mathsf{ \frac{(ñ ü + 2 ñ) }{2} }} el límite de:
\mathrm{\mathsf{ \frac{(ñ ü (1 - cos(x)))}{x² }+ ñ }} mientras...
Límite[((ñ ü (1-cos(x))) / x^2)+ñ, ñ, 0 ] da 0

Límite[a sin(x)/x, 0] da a

Límite[ñ sen(t)/t, 0] da ñ
Límite[ cos(x)/x, 0] da por resultado el signo ? con el que en esta vista se indica que no está definido el límite en cuestión.

Bulbgraph.png¡OjO!:
No todos los límites pueden calcularse y en tales casos aparecerá indefinido o, en la Vista CAS, el signo ? por respuesta, del mismo modo que en las ocasiones en que el resultado correcto resulte precisamente ese.
Para obtener los límites de una función definida por tramos, están disponibles los comandos LímiteSuperior y/o LímiteInferior.
Ejemplo:
Dada la función Si[x < 1, x², -2x], lo adecuado es calcular sendos límites, a izquierda y derecha con...
  • LímiteInferior[Si[x < 1, x², -2x], 1] da por resultado 1 y
  • LímiteSuperior[Si[x < 1, x², -2x], 1] da -2

Nota: Ver también los comandos Asíntota, LímiteSuperior y LímiteInferior.

  • GeoGebra
  • Help
  • Partners
  • Contact us
    • Feedback & Questions
    • This e-mail address is being protected from spambots. You need JavaScript enabled to view it.
    • +43 732 2468 6879
© 2014 International GeoGebra Institute