UnitPerpendicularVector Command

From GeoGebra Manual
Jump to: navigation, search


UnitPerpendicularVector[ <Line>]
Returns the perpendicular vector with length 1 of the given line.
Example:
UnitPerpendicularVector[3x + 4y = 5] yields \mathrm{\mathsf{ \begin{pmatrix}0.6\\0.8\end{pmatrix} }}.
UnitPerpendicularVector[ <Segment> ]
Returns the perpendicular vector with length 1 of the given segment.
Example:
Let s = Segment[(1,1), (4,5)].
UnitPerpendicularVector[s] yields \mathrm{\mathsf{ \begin{pmatrix}-0.8\\0.6\end{pmatrix} }}.
UnitPerpendicularVector[ <Vector> ]
Returns the perpendicular vector with length 1 of the given vector. The vector must be defined first.
Example:
Let v=\mathrm{\mathsf{ \begin{pmatrix}3\\4\end{pmatrix} }}. UnitPerpendicularVector[v] yields \mathrm{\mathsf{ \begin{pmatrix}-0.8\\0.6\end{pmatrix} }}.
Note: In the Menu view cas.svg CAS View vectors with undefined variables are also valid input.
Example:
UnitPerpendicularVector[(a, b)] yields (\mathrm{\mathsf{ \frac{-b}{\sqrt{a^{2} + b^{2}}} }},\mathrm{\mathsf{ \frac{a}{\sqrt{a^{2} + b^{2}}} }}).

CAS Syntax

UnitPerpendicularVector[ <Plane> ]
Creates a unit vector orthogonal to the plane.
  • GeoGebra
  • Help
  • Partners
  • Contact us
    • Feedback & Questions
    • This email address is being protected from spambots. You need JavaScript enabled to view it.
    • +43 677 6137 2693
© 2017 International GeoGebra Institute