Predefined Functions and Operators

Jump to: navigation, search
Accessories dictionary.png
This page is part of the official manual for print and pdf. For structural reasons normal users can't edit this page. If you found any errors on this page please contact us. Go to the version which can be edited by users.

To create numbers, coordinates, or equations using the Input Bar you may also use the following pre-defined functions and operations. Logic operators and functions are listed in article about Boolean values.

Note: The predefined functions need to be entered using parentheses. You must not put a space between the function name and the parentheses.

Operation / Function Input
ℯ (Euler's number) Alt + e
ί (Imaginary unit) Alt + i
π Alt + p or pi
° (Degree symbol) Alt + o
Addition +
Subtraction -
Multiplication * or Space key
Scalar product * or Space key
Vector product(see Points and Vectors)
Division /
Exponentiation ^ or superscript (x^2 or x2)
Factorial !
Parentheses ( )
x-coordinate x( )
y-coordinate y( )
Argument arg( )
Conjugate conjugate( )
Absolute value abs( )
Sign sgn( ) or sign()
Square root sqrt( )
Cubic root cbrt( )
Random number between 0 and 1 random( )
Exponential function exp( ) or ℯx
Logarithm (natural, to base e) ln( ) or log( )
Logarithm to base 2 ld( )
Logarithm to base 10 lg( )
Logarithm of x to base b log(b, x )
Cosine cos( )
Sine sin( )
Tangent tan( )
Secant sec()
Cosecant cosec()
Cotangent cot()
Arc cosine acos( ) or arccos( )
Arc sine asin( ) or arcsin( )
Arc tangent (returns answer between -π/2 and π/2) atan( ) or arctan( )
Arc tangent (returns answer between -π and π) atan2(y, x)
Hyperbolic cosine cosh( )
Hyperbolic sine sinh( )
Hyperbolic tangent tanh( )
Hyperbolic secant sech( )
Hyperbolic cosecant cosech( )
Hyperbolic cotangent coth( )
Antihyperbolic cosine acosh( ) or arccosh( )
Antihyperbolic sine asinh( ) or arcsinh( )
Antihyperbolic tangent atanh( ) or arctanh( )
Greatest integer less than or equal floor( )
Least integer greater than or equal ceil( )
Round round( )
Beta function Β(a, b) beta(a, b)
Incomplete beta function Β(x;a, b) beta(a, b, x)
Incomplete regularized beta function I(x; a, b) betaRegularized(a, b, x)
Gamma function Γ(x) gamma( x)
(Lower) incomplete gamma function γ(a, x) gamma(a, x)
(Lower) incomplete regularized gamma function P(a,x) = γ(a, x) / Γ(a) gammaRegularized(a, x)
Gaussian Error Function erf(x)
Real real( )
Imaginary imaginary( )
Digamma function psi(x)
The Polygamma function is the (m+1)th derivative of the natural logarithm of the Gamma function, gamma(x) (m=0,1) polygamma(m, x)
The Sine Integral function sinIntegral(x)
The Cosine Integral function cosIntegral(x)
The Exponential Integral function expIntegral(x)
The Reimann-Zeta function ζ(x) zeta(x)
Conjugate(17 + 3 * ί) gives -3 ί + 17, the conjugated complex number of 17 + 3 ί.
See Complex Numbers for details.